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Generalized Additive Models

Trevor Hastie and Robert Tibshirani

Abstract. Likelihood-based regression models such as the normal linear
regression model and the linear logistic model, assume a linear (or some
other parametric) form for the covariates X;, X,, ---, X,. We introduce
the class of generalized additive models which replaces the linear form
Y, B;X; by a sum of smooth functions Y, s;(X;). The s;(-)’s are unspecified
functions that are estimated using a scatterplot smoother, in an iterative
procedure we call the local scoring algorithm. The technique is applicable to
any likelihood-based regression model: the class of generalized linear models
contains many of these. In this class the linear predictor n = ¥ 8,X; is
replaced by the additive predictor Y s;(X;); hence, the name generalized
additive models. We illustrate the technique with binary response and
survival data. In both cases, the method proves to be useful in uncovering
nonlinear covariate effects. It has the advantage of being completely auto-
matic, i.e., no “detective work” is needed on the part of the statistician. As
a theoretical underpinning, the technique is viewed as an empirical method
of maximizing the expected log likelihood, or equivalently, of minimizing the
Kullback-Leibler distance to the true model.

Key words and phrases: Generalized linear models, smoothing, nonpara-

metric regression, partial residuals, nonlinearity.

1. INTRODUCTION

Likelihood-based regression models are important
tools in data analysis. A typical scenario is the follow-
ing. A likelihood is assumed for a response variable Y,
and the mean or some other parameter is modeled as
a linear function Y% 8, X; of a set of covariates X;, X,,
-+, X,. The parameters of the linear function are
then estimated by maximum likelihood. Examples of
this are the normal linear regression model, the logis-
tic regression model for binary data, and Cox’s pro-
portional hazards model for survival data. These
models all assume a linear (or some parametric) form
for the covariate effects.

A trend in the past few years has been to move away
from linear functions and model the dependence of Y
on X;, X, ---, X, in a more nonparametric fashion.
For a single covariate, such a model would be Y =
s(X) + error where s(X) is an unspecified smooth
function. This function can be estimated by any so-
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called scatterplot smoother, for example a running
mean, running median, running least squares line,
kernel estimate, or a spline (see Reinsch (1967),
Wahba and Wold (1975), Cleveland (1979), and Sil-
verman (1985) for discussions of smoothing tech-
niques). For the p covariates X = (X, X, ---, X,),
one can use a p-dimensional scatterplot smoother to
estimate s(X), or else assume a less general model
such as the additive model s(X) = ¥? s;(X;) and
estimate it in an iterative manner.

In this paper we propose a class of models that
extends the usual collection of likelihood-based regres-
sion models and a method for its estimation. This new

. class replaces the linear function Y% 8;X; by an addi-
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tive function Y% s,(X;); we call it the class of general-
ized additive models. The technique for estimating the
s,(+)’s, called the local scoring algorithm, uses scatter-
plot smoothers to generalize the usual Fisher scoring
procedure for computing maximum likelihood esti-
mates. For example, the linear logistic model for
binary data specifies log[p(X)/(1 — p(X))] = 8o +
61 X1 + --- + B,X,, where p(X) = Prob(Y = 1| X).
This is generalized to log[p(X)/(1 — p(X))] =
Y% si(X;), and the local scoring procedure provides
nonparametric, smooth estimates of the s;(-)’s. The
smooth functions produced by the local scoring pro-
cedure can be used as a data description, for predic-
tion, or to suggest covariate transformations. One can
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allow a smooth estimate for all of the covariates or
force a linear fit for some of them. Such a semipara-
metric model would naturally arise if categorical cov-
ariates were present, but would also be useful if, for
reasons specific to the data at hand, a linear fit was
desired for certain covariates.

The Gaussian and logistic models are members of
the class of generalized linear models (GLM) (Nelder
and Wedderburn, 1972). This comprehensive class
restricts Y to be in the exponential family (with an
unspecified scale parameter); the statistical package
GLIM (generalized linear interactive modeling) per-
forms estimation and diagnostic checking for these
models. Generalized additive models extend GLM by
replacing the linear predictor n = Y% §;X; with an
additive predictor of the form n = Y s;(X;). The third
example, the proportional hazards model mentioned
earlier, is not in the exponential family, and the like-
lihood it uses is not in fact a true likelihood at all.
Nevertheless, we still think of it as a “likelihood-
based” regression model and the techniques can
be applied. The usual form for the relative risk
exp(X} B;X;) is replaced by the more general form
exp(XF 5i(X))).

The local scoring procedure is similar to another
method for estimating generalized additive models,
- local likelihood estimation (Hastie, 1984a; Tibshirani,
1984, and references therein). In this paper we com-
pare the two techniques in some examples and find
that the estimated functions are very similar. The
advantage of the local scoring method is that it is
considerably faster.

Generalized additive models provide one way to
extend the additive model E(Y | X) = Y% s;(X;). At
least two other extensions have been proposed. Fried-
man and Stuetzle (1981) introduced the projection
pursuit regression model E(Y | X) = ¥7 s;(a/X). The
direction vectors a; are found by a numerical search,
while the s;(-)’s are estimated by smoothers. The ACE
(alternating conditional expectation) model of Brei-
man and Friedman (1985) generalizes the additive
model by estimating a transformation of the response:
E@(Y)|X) = ¥ 5;(X;). Breiman and Friedman dis-
cuss other extensions in their article.

This, paper is nontechnical for the most part, with
an emphasis on the techniques and their illustration
through examples. In Section 2, we review the linear
regression model and its generalization (the additive
model). Section 3 reviews generalized linear models.
In Section 4, we link smoothing and generalized linear
models to produce a more general model. The two
techniques for estimation are introduced and illus-
trated.

In Section 5, we present a unified framework in
which to view the estimation procedures, and a general
form of local scoring applicable to any likelihood-

based regression model. Section 6 contains examples
of the procedures, including the logistic model and
Cox’s model for censored data. In Section 7 we discuss
multiple covariate models and backfitting procedures.
Section 8 compares the local scoring and local like-
lihood procedures, and finally in Section 9 we discuss
extensions of the models and related work.

2. THE LINEAR REGRESSION MODEL AND ITS
SMOOTH EXTENSION

Our discussion will center on a response random
variable Y, and a set of predictor random variables
Xi, X2, -+, X,. A set of n independent realiza-
tions of these random variables will be denoted by
(yl, X115 v *°y xlp)a ct (yn, Xniy =y xnp)~ When Working
with a single predictor (p = 1), we’ll denote it by X
and its realizations by x;, x,, - - -, ..

A regression procedure can be viewed as a method
for estimating E(Y| X;, X, ---, X,). The standard
linear regression model assumes a simple form for this
conditional expectation:

E(Y|Xl, XZ, ] Xp)
=B+ B Xi+ - + B X,.

Given a sample, estimates of 8, 81, - - -
obtained by least squares.

The additive model generalizes the linear regression
model. In place of (1), we assume

1)

, By are usually

b
(2) E(YIXIa X2a "°,Xp) =SO+ Z Sj()(j),
Jj=1

where the s;(-)’s are smooth functions standardized
so that Es;(X;) = 0. These functions are estimated
one at a time, in a forward stepwise manner. Estima-
tion of each s;(-) is achieved through a scatterplot
smoother.

2.1 Scatterplot Smoothers

Let’s look first at the case of a single predictor. Our
model is

(3) E(Y|X) = s(X).

(If there is only one smooth function, we suppress the
constant term s, and absorb it into the function.) To
estimate s(x) from data, we can use any reasonable
estimate of E(Y | X = x). One class of estimates are
the local average estimates:

(4) §(x:) = Avejenty;l,

where Ave represents some averaging operator like
the mean and N; is a neighborhood of x; (a set of
indices of points whose x values are close to x;). The
only type of neighborhoods we’ll consider in this paper
are symmetric nearest neighborhoods. Associated with
a neighborhood is the span or window size w; this is
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the proportion of the total points contained in each
neighborhood. Let [x] represent the integer part of x
and assume that [wn] is odd. Then a span w symmetric
nearest neighborhood will contain [wn] points: the ith
point plus ([wn] — 1)/2 points on either side of the
ith point. Assuming that the data points are sorted by
increasing x value, a formal definition is:

Ni=<{max<i—[y)n—]2:—l,l), v i1,

(5) L
i+1, -, min(i + Lw_n]_2__, n)}

We see that the neighborhoods are truncated near the
end points if (wn] — 1)/2 points are not available.
The span w controls the smoothness of the resulting
estimate, and is usually chosen in some way from the
data.

If Ave stands for arithmetic mean, then s(-) is the
running mean, a very simple scatterplot smoother.
The running mean is not a satisfactory smoother
because it creates large biases at the end points and
doesn’t generally reproduce straight lines (i.e., if the
data lie exactly along a straight line, the smooth of
the data will not be a straight line). A slight refinement
of the running average, the running lines smoother
alleviates these problems. The running lines estimate
is defined by

(6) §(x:) = Boi + Buixi,
where 30;- and B,; are the least squares estimates for

the data points in N;:

f; = 2ieh (5 = %)
(7 ' ZjeNi (xj - %)?’
Bo;‘ =3y — 311'331':

and &; = (1/n) Yjen, xj, i = (1/n) Yjen, yj. An estimate
of s(a) for a not equal to one of the x;’s can be obtained
by interpolation.
The running lines smoother is the most obvious
generalization of the least squares line. If w = 2 (that
.is every neighborhood contains all the data points),
the smooth agrees exactly with least squares regres-
sion line (note that with w = 1 a neighborhood at the
end points would only contain about half of the data
points). Although very simple in nature, the running
lines smoother produces reasonable results and has
the advantage that the estimate in a neighborhood
can be found by updating the estimate of the previous
neighborhood. As a result, a running lines smoother
can be implemented in an O(n) algorithm (an algo-
rithm having number of computations proportional to
n), a fact that will become important when we use it
as a primitive in other procedures. For the rest of this

paper, a “smooth]-]” operation will refer to a running
lines smoother for some fixed span.

It is important to note, however, that the running
lines smoother plays no special role in the algorithms
that are described in this paper. Other estimates of
E(Y| X) could be used, such as a kernel or spline
smoother. Except for the increased computational
cost, these smoothers could be expected to work as
well or better than the running lines smoother.

Finally, using smooth as a building block, the full
model (2) can be estimated in a forward stepwise
manner. This is discussed in Section 7.

2.2 Span Selection and the Bias-Variance Tradeoff

The running lines smoother requires a choice of
span size w. Let’s look at the extreme choices first.
When w = 1/n, §(x;) is just y;. This is not a good
estimate because it has a high variance and is not
smooth. If w = 2, §(-) is the global least squares
regression line. This estimate is too smooth and will
not pick up curvature in the underlying function, i.e.,
it might be biased. Hence, the span size should be
chosen between 1/n and 2 to tradeoff the bias and
variability of the estimate.

A data-based criterion can be derived for this pur-
pose if we consider the estimates of E(Y | X) as em-
pirical minimizers of the (integrated) prediction
squared error (PSE)

(8) PSE = E(Y — s(X))?

or equivalently the integrated mean squared error
(MSE)

9) MSE = E(E(Y| X) — s(X))*

Let 5;'(x;) be the running lines smooth of span w, at
x;, having removed (x;, y;) from the sample. Then the
cross-validation sum of squares (CVSS) is defined by

(10)  CVSS@w) = (1/n) § (3 — $2i(x))2
1

One can show that E(CVSS(w)) is approximately
PSE, using the fact that §;'(x;) is independent of y;.
Thus it is reasonable to choose the span w that pro-
duces the smallest value of CVSS(w). This criterion
effectively weighs bias and variance based on the
sample. Cross-validation for span selection is
discussed in Friedman and Stuetzle (1982). Note
that if we used the observed residual error RSS =
(1/n) 37 (yi — 3u(x;))? to choose w, (5, (x;) being the
fit at x; with span w) we would get w = 1/n and hence
$(x;) = y;. Not surprisingly, residual sum of squares
(RSS) is not a good estimate of PSE. The point is
that by choosing the span to minimize an estimate of
expected squared error, we get a useful estimate.
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3. A REVIEW OF GENERALIZED LINEAR
MODELS (GLMs)

Generalized linear models (Nelder and Wedderburn,
1972) consist of a random component, a systematic
component, and a link function linking the two com-
ponents. The response Y is assumed to have exponen-
tial family density

1) fr(y; 0; ¢) = exp{%b)(—’”

where 6 is called the natural parameter and ¢ is the
scale parameter. This is the random component of the
model. We also assume that the expectation of Y,
denoted by p, is related to the set of covariates X,
X, -+, X, by g(n) =, where n = o + 61 X; + --- +
BpXp. nis the systematic component and g(-) is the
link function. Note that the mean u is related to the
natural parameter § by u = b’(0); also, the most
commonly used link for a given f is called the canonical
link, for which » = 6. It is customary, however, to
define the model in terms of u and n = g(u) and thus
0 does not play a role. Hence, when convenient we’ll
write fY(ya 03 ¢) as fY(y’ Ky ¢)

Estimation of 4 won’t involve the scale parameter
¢, so for simplicity this will be assumed known.

Given specific choices for the random and sys-
tematic components, a link function, and a set of n
qbseryatigns, theA maximum likelihood estimate of
B = (Bo, B1, - -+, By) can be found by a Fisher scoring
procedure. GLIM uses an equivalent algorithm called
adjusted dependent variable regression. Given 7 (a
current estimate of the linear predictor), with corre-
sponding fitted value i, we form the adjusted depend-
ent variable

+ c(y, ¢)}>,

) . (d
(12) z=h+(y— u)<33>.
i
Define weights W by
d 2
(13) (W)™ = (—3> v,
du

where V is the variance of Y at u = u. The algorithm
proceeds by regressing z on 1, x4, - - -, x, with weights
W to obtain an estimate 8. Using B3, a new /1 and 1 are
computed. A new z is computed and the process is
repeated, until the change in the deviance

(14) dev(y, u) = 2[l(y) = ()]

is sufficiently small. In the above, [(u) is the log
likelihood ¥ log fy(¥:, ui, ¢). Nelder and Wedderburn
show that the adjusted dependent variable algorithm
is equivalent to the Fisher scoring procedure, that is
the sequence of estimates is identical. It is attractive
because no special optimization software is required,
just a subroutine that computes weighted least squares

estimates. Green (1984) gives an excellent discussion
of iteratively reweighted least squares methods for
maximum likelihood estimation.

A comprehensive description of generalized linear
models is given by McCullagh and Nelder (1983).

4. SMOOTH EXTENSIONS OF GENERALIZED
LINEAR MODELS

4.1 Specification of the Model

The linear predictor n = 8o + 1. X1 + -+ + B, X,
specifies that X;, X,, ---, X, act in a linear fashion.
A more general model is

(15) n=s0 + z 5 (X)),

where s,(-), ---, s,(-) are smooth functions. These
functions will not be given a parametric form but
instead will be estimated in a nonparametric fashion.

4.2 Estimation of the Model—Local Scoring

We require an estimate of the s;(-)’s in (15). For
the linear model n = 8o + $1.X; + .-+ + 3,X,, the
estimates were found by repeatedly regressing the
adjusted dependent variable zon 1, Xj, - - -, X,. Since
smoothing generalizes linear regression, in the smooth
model » = s(X), we can estimate s(-) by repeatedly
smoothing the adjusted dependent variable on X. We
call this procedure local scoring because the Fisher
scoring update is computed using a local estimate of
the score. This intuitive idea can be justified on firm
grounds (see Section 5). For the full model (15), the
smooths can be estimated one at a time in an iterative
fashion. This idea is discussed in detail in Section 7.

In Figure 1 (Section 6) we display the results of
local scoring smoothing (solid curve), exp(s(x))/(1 +
exp(s(x))), along with the usual linear estimate (al-
most straight curve) exp(8, + 8:1x)/(1 + exp(Bo + B1x)),
for some binary response data. This is one of the
smooths from the analysis of Haberman’s breast can-
cer data discussed in detail in Sections 6 and 7.

This procedure requires a choice of span. In the
Gaussian or ordinary additive regression models we
use the CVSS (10) té guide us in selecting spans.
CVSS is approximately unbiased for the expected
prediction squared error, whereas RSS is not and
would lead us to pick spans of 1/n. In the exponential
family, the deviance is the analogue of RSS. It is a
sample estimate of the expected Kullback-Leibler dis-
tance between a model and future observations. Just
like the RSS it will be biased for this quantity. For
span selection, one can think of cross-validating the
deviance in order to get an approximately unbiased
estimate for the Kullback-Leibler distance. This
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however would be very expensive due to the nonlinear
nature of the estimation procedure. In ordinary addi-
tive regression, simple deletion formula allow one to
calculate cross-validated fits in O(n) computations. In
the local scoring algorithm, however, the entire esti-
mation procedure would have to be repeated n times,
and so cross-validation would be very expensive.

Instead, we find the span at each iteration by cross-
validation as described in Section 2. Recall that
E(CVSS(w)) = PSE for a scatterplot smoother; the
derivation of this rests on the fact that the fitted value
§3'(x;) does not involve y;, and thus is independent of
y;. In this setting, the response is the adjusted depend-
ent variable z; which is a function of y;. The cross-
validated fit for z; is a function of z;, j # i. Since z; is
a function of y; from previous iterations, z; is not
independent of its cross-validated fit. However, if k&,
is the number of points in the neighborhood, then one
can show that under reasonable conditions the corre-
lation is only O(1/k,).

To obtain smoother estimates, we use a slight mod-
ification of this criterion. We choose a larger span
than the cross-validatory choice if it produces less
than a 1% increase in CVSS(w).

4.3 Estimation of the Model—Local Likelihood

Hastie (1984a) and Tibshirani (1984) discuss an-
other method for estimating smooth covariate func-
tions called local likelihood estimation. For a single
covariate, the usual (linear) procedure fits a line across
the entire range of X, i.e., n = 8, + 8. X. To estimate
the model n = s(X), the local likelihood procedure
generalizes this by assuming that locally s(x) is linear
and fits a line in a neighborhood around each X value.
In the exponential family with canonical link, the
local likelihood estimate of s(x;) is defined as

(16) $(x:) = Boi + Buxi,

where Bo; and $,; maximize the local log likelihood

_ i — b(0;) A
(17)  log L; ,EZN,. { a0 Tt (v, ¢)},
and 0; = Bo; + Bux;. The local likelihood smooth
applied to the Haberman data is shown in Figure 1
(dotted line). They are very similar, a fact that seems
to be a general phenomenon. We discuss the relation-
ship between the two procedures in Section 8.

Local scoring and local likelihood estimation pro-
vide two methods for estimating the covariate func-
tions of a generalized linear model. In the next section,
we introduce a theoretical framework in which to view
both of these techniques. Besides providing a justifi-
cation for the methods, this framework also produces
a general form of local scoring that can be used in any
likelihood-based regression model.

5. JUSTIFICATION OF THE SMOOTHING
PROCEDURES

5.1 The Expected Log Likelihood Criterion

In Section 2 we discussed scatterplot smoothers as
estimates of E(Y | X). There we saw that by choosing
the span to minimize an estimate of expected squared
error (as opposed to residual sum of squares), we
obtained a useful estimate. In this section, we will use
this idea in a likelihood setting, basing the estimation
procedures on expected log likelihood.

Consider a likelihood-based regression model with
one covariate. We assume that the data pairs (x;, y,),
-+, (%, y,) are independent realizations of random
variables X and Y. Assume also that given X =x, Y
has conditional density h(y, n). Since 75 is a function
of x, we will sometimes write 5(x) for emphasis. De-
note the corresponding log likelihood for a single
observation by [(», Y) or [ for short. Now to estimate
n(-), we could simply maximize Y7 I(n(x;), y;) over
{n(x1), n(x2), - - -, n(x,)}. This is unsatisfactory, how-
ever, because it doesn’t force the estimate to be
smooth. In the logistic model, for example, it produces
n(x;) = + if y; =1 and —o if y; = 0, and the estimated
probabilities are just the observed y;’s. Looking back
at the scatterplot smoothing discussion, we see that a
remedy in the random variable case is to choose 7 (-)
to maximize the expected log likelihood:

(18)  E((n(X), Y)) = max E(l(n(X), Y)),

the expectation being over the joint distribution of X
and Y. This has intuitive appeal since we are choosing
the model to maximize the likelihood of all possible
future observations.

In the exponential family the motivation is
strengthened if we use the Kullback-Leibler distance
as the generalization of squared error. This measures
the distance between densities; the distance between
a model with true parameter »* and one with param-
eter 5 is defined as K(n*, n) = E, log h(Y, n*)/h(Y,

“n). We regard this equivalently as a measure of

distance between the two parameters n* and 7, or even
the associated means u* and u. The following decom-
positions, one for squared error, the other for
Kullback-Leibler distance, are easily derived:

E(Y — u(X))?

= E(Y — p*(X))* + E(w*(X) — n(X))%,
(19)

EK(Y, n(X))
= EK(Y, p*(X)) + EK(u*(X), n(X)),

where p*(X) is the true conditional mean. From (19)
we see that if we minimize the expected Kullback-
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Leibler distance from future observations EK(Y,
(X)), then we get the model u(X) closest to u*(X).
If u(x) is unrestricted, the minimum is achieved at
p(x) = u*(x). If the distribution is Gaussian, the
Kullback-Leibler distance becomes squared error
(times Y2). Since EK(Y, u(X)) = EI(Y, Y) — El(Y, p),
we see that this is equivalent to maximizing the ex-
pected log likelihood.

The use of expected log likelihood has also been
suggested by Brillinger (1977) and Owen (1983). In
what follows, we show that standard maximum like-
lihood estimation for generalized linear models, local
scoring, and local likelihood estimation can all be
viewed as methods for empirically maximizing the
expected log likelihood.

5.2 Derivation of the Estimation Techniques Via
Expected Log Likelihood

One way to use (18) for estimation of n(x) would be
to assume a simple form for 5 (x), like n(x) = 8o + B1x.
We would then be finding the linear n(x) closest in
Kullback-Leibler distance to n*(x). The expectation
in (18) could then be replaced by its sample analogue,
and the resultant expression maximized over 8, and
B:. This is nothing more than standard maximum
likelihood estimation.

Now suppose (as is the point of this paper) that we
don’t want to assume a parametric form for 7(x).
Differentiating (18) with respect to (the number) n we
get

(20) E(dl/dn|x)i = 0,

assuming expectation and differentiation can be in-
terchanged. Given some initial estimate n(x), a first
order Taylor series expansion gives the improved
estimate

21)  #'(x) = n(x) — E(dl/dn|x)/E(d®l/dn*| x)

or
]

. This provides a recipe for estimating »(-) in practice.
Starting with some initial estimate n(x), a new esti-
mate is obtained using formula (22), replacing the
conditional expectations by scatterplot smoothers.
The data algorithm analogue is thus

dl/dn
E(d*/dn* | x)

(22)  7'(x) = E[n(x) -

dl/dn ]
smooth[d?l/dy*]]
Since the variance of each of the terms in the brackets

is approximately « E (d?//dn?), the smoother could use
weights o« smooth(d?/dn?)~" for efficient estimation.

23) n'x) = smooth[n(x) -

The data algorithm consists of repeated iterations of
(23), stopping when the deviance fails to change by a
small amount.

In the exponential family case, we can simplify (22)
before replacing E(-|x) by smooth. We compute
difdn = (y — w)V ' du/dn), d’l/dn* = (y — u)-
(d/dn) [V~ (du/dn)] — (du/dn)*V~?, and

E((d®Y/dn®) | x) = —(dp/dn)*V7.
Hence the update simplifies to
(24)  n'(x) = E[n(x) + (Y — p) (dn/dp) | x].
The data analogue is
(25) n'(x) = smooth[n(x) + (y — ) (dn/dp)]

with weights (du/dn)*V . This is exactly a smooth of
the adjusted dependent variable, suggested on intui-
tive grounds in Section 4.

Note that we chose the form (22) instead of (21). In
the case of distributions, they are the same because
conditional expectation is a projection operator. Most
smoothers are not projections and thus the two forms
are not equivalent in the data case. We chose (22)
because in the Gaussian case it simplifies to 7(x) =
smooth[y] without any iteration, whereas (21) would
require iteration even in this simple case.

The local likelihood procedure can also be viewed
as an empirical method of maximizing El(n(X), Y).
Instead of differentiating this expression (as above),
we write El(n(X), Y) = E(E(l(n(X), Y)| X = x)).
Hence it is sufficient to maximize E(l(n(X), Y) | X =
x) for each x. The corresponding data recipe can be
derived as follows. Consider estimating 5(x) at some
point x = x;. An estimate of E(/(n(X), Y) | X = x;) is

(26) E(ln(X),Y)|X=x)=(1/kn) EZN Ln(x;), ),

where k, is the number of data points in N;. Assuming
n(x) = Bo; + Bux for points in N;, (26) is then maxi-
mized over (o; and 81;. The resulting estimate, 5(x;) =
Bm + By:x;, is the local likelihood estimate as defined
in Section 4.

The algorithms described here can be used in any
likelihood-based regression model. As a technical
point, note that in the exponential family, we linked
the additive predictor n = Y% 5;(X;) to the distribution
of Y via 5 = g(u). In some nonexponential family
models, p is a complicated function of the model
parameters or may not exist at all. It would then be
desirable to link 5 to some other parameter of the
distribution. This is true in the Cox model (see the
next section). In any case, there is little difficulty—
however, 7 is linked to the distribution of Y, the
likelihood is some function of 5 and its derivatives are
used in the updating formula.



GENERALIZED ADDITIVE MODELS 303

To summarize so far, maximization of the expected
log likelihood has led to a general technique for esti-
mating a smooth covariate function: the local scoring
procedure. In the case of the exponential family like-
lihood this procedure corresponds to smoothing of the
adjusted dependent variable. Standard (linear) maxi-
mum likelihood estimation and local likelihood esti-
mation can also be viewed as empirical maximizers of
expected log likelihood. Equivalently they can all be
viewed as empirical minimizers of the expected
Kullback-Leibler distance between the model and the
estimate.

So far we have not addressed the problem of mul-
tiple covariates—this will be done in Section 7.

6. SOME EXAMPLES

6.1. The Gaussian Model

For the Gaussian model with identity link, (25)
simplifies to n'(x) = smooth[y], and the local scoring
algorithm reduces to a running lines smooth of y and
x. The local likelihood procedure also gives the run-
ning lines smooth of y on x, since the Alocal maximum
likelihood estimate is 7(x;) = Bo; + Bux:, 5’0,~ and By
being the least squares estimates for the points in N;.
The Gaussian model is applied to a large meterological
data set in Hastie and Tibshirani (1984).

6.2. The Linear Logistic Model

A binomial response model assumes that the pro-
portion of successes Y is such that n(x)Y|x ~
Bin(n(x), p(x)), where Bin(n(x), p(x)) refers to the
binomial distribution with parameters n(x) and p(x).
Often the data is binary in which case n(x) = 1. The
binomial distribution is°a member of the exponential
family with canonical link

p(x)
(1 — p(x)

In the linear logistic model we assume 5(x) = 8y + B x,
and the parameters are estimated by maximum like-
lihood using Fisher scoring or equivalently by using
adjusted dependent variable regression. The smooth
extension of this model generalizes the link relation
to log' [ p(x)/(1 — p(x))] = n(x). The local scoring step
is

g(p(x)) = log = n(x).

y — p(x) ]
p(x)(1 = p(x))

with weights n(x)p(x)(1 — p(x)). We now demonstrate
the procedure on some real data.

A study conducted between 1958 and 1970 at the
University of Chicago’s Billings Hospital concerned
the survival of patients who had undergone surgery

27 7'(x) = smooth[n(x) +

for breast cancer (Haberman, 1976). There are 306
observatlons on four variables.

__ J1 if patient i survived 5 years or longer,
Yi 0 otherwise,

x;; = age of patient i at time of operation,
xiz = year of operation i (minus 1900),

%3 = number of positive axillary nodes detected
in patient .

Figure 1 shows the response variable plotted against
the covariate age. The solid nonlinear function was
estimated using the local scoring method, with a span
of .6. Now for a single covariate one could simply
average the 0-1 response directly—this produced the
dashed curve in the figure. It is identical with the
function found using the local likelihood method fit-
ting local constants to the logits. The local likelihood
smooth fitting local straight lines (the more usual
approach) is the dotted curve. The three nonparamet-
ric estimates are all similar, with bias affecting the
running mean near the end points, and all give a
different qualitative description of the data than the
linear fit (almost straight curve). One can compare
the linear logistic fit to any of the smooth estimates
by examining the corresponding drops in deviance.
For example, the local scoring estimate produced a
deviance of 5.6 less than the linear logistic fit, while
using only 1.6 more degrees of freedom (see Section
9), and hence the linear logistic fit is not adequate for
these data.

1.00 |- ee eoe

0.75

050 -

P(survival)

0.25 -

®e ©000000000c000c00 vo0es Oce oo o o

0.00 - .

Fic. 1. Survival of patients who underwent surgery versus age of
the patient. The local scoring function is the solid curve, the local
likelihood function is dotted, the running mean of the y’s is dashed,
and the linear logistic function is the almost straight curve. The area
of the circles is proportional to the number of observations.
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We will see in the Section 7 that in fitting multiple
covariate models, the approach of smoothing the re-
sponse variable directly breaks down, whereas the
local scoring and local likelihood techniques generalize
easily. We will pursue this example in Section 7.

6.3. The Cox Model

The proportional hazards model of Cox (1972) is an
example of a nonexponential family regression model.
This model is used to relate a covariate to a possibly
censored survival time. The data available are of the
form (yi, %1, 61), - -+, (¥n, Xn, 6,), the survival time y;
being complete if 6, = 1 and censored if §; = 0. We
assume there are no ties in the survival times. The
proportional hazards model assumes the hazard rela-
tion

(28) A(E|x) = No(t)e™™

The parameter 3 can be estAimated without specifica-
tion of Ao(t) by choosing 8 to maximize the partial
likelihood (PL)

(29) PL =[] —
B i€D 2 jeR; e’

In the above, D is the set of indices of the failures
and R; = {j | y; < y:} the risk set just before the failure
at y;.

A more general model is

(30) At x) = No(t)e™™

where 7(x) is a smooth function of x. One way to
estimate 5(x) would be to apply the local scoring
formula (23). Letting [ equal the log partial likelihood
and C; = {k:i € R;}, (the risk sets containing individ-
ual i), straightforward calculations yield

al 1
31 —E e Y ————
@1) an(x;) kgc,- Yjer, "
and
a—zl = —pnlx) ____1_
(32) an(x:)* rec; 2 jer, €"Y
+ e277(x,') 1

ree, (X jer, €")?

Starting with say 7(x) = Bx, smooths are applied to
these quantities, as in (23), and the process is iterated.

The local likelihood technique can also be applied
to the Cox model—this is described in Tibshirani
(1984). We won’t give details here. Instead, we’ll illus-
trate the two estimation techniques with a real data
example.

Miller and Halpern (1982) provide a number of
analyses of the Stanford heart transplant data. The
data, listed in their paper, consist of 157 observations

20

1.6

05

s(age)

0.0

age
F1G. 2. The Stanford heart transplant data. The solid curve is the

local scoring function, the dashed line is the local likelihood function,
and the dotted line is the proportional hazards quadratic fit.

TABLE 1
Analysis of Stanford heart transplant data—age

-2 log Degrees
Model likelihood  of freedom
Null 902.40 0
Linear 894.82 1
Linear + quadratic 886.24 2
Local likelihood (span .5) 884.65 2.95
Local scoring (span .5) 884.66 2.95

of time to failure (months) and two covariates, age
(years) and T5 mismatch score. Here we will consider
only the age variable.

Figure 2 shows the smooth obtained by local scoring
(solid line) and local likelihood (broken line). Also
shown is the fit obtained using a linear and quadratic
term for age in a standard Cox analysis (dotted line).
The smooths suggest that the relative risk stays about
constant up to age 45, then rises sharply. The quad-
ratic model forces a parametric shape on the function,
and suggests (perhaps misleadingly) that the relative
risk drops then rises. Table 1 summarizes the results
of the various fitting procedures.

The approximate degrees of freedom or number of
parameters of the model are discussed in Section 9.
The table suggests that there is insufficient data to
distinguish between the quadratic and smooth fits.
This data set is analyzed more thoroughly in
Tibshirani (1984).

7. MULTIPLE COVARIATES

When we have p covariates, represented by the
vector X = (X;, X, - - -, Xp), a general model specifies
E(Y|X) = u and g(u) = n(X), where 7 is a function
of p variables. We will first discuss the Gaussian case
and show why it is necessary to restrict attention to
an additive model.
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We assume
(33) Y=9X)+¢

where 7(X) = E(Y | X), Var(Y | X) = ¢2, and the errors
¢ are independent of X. The goal is to estimate 5(X).
If we use the least squares criterion E(Y — 5(X))?2, the
best choice for n(X) is E(Y | X). In the case of a single
covariate, we estimated E(Y|X) by a scatterplot
smoother which in its crudest form is the average of
those y; in the sample for which x; is close to x.

We could think of doing the same thing for multiple
covariates: average the y; for which x; is close to x.
However, it is well known that smoothers break down
in higher dimensions (Friedman and Stuetzle, 1981);
the curse of dimensionality takes its toll. The variance
of an estimate depends on the number of points in the
neighborhood. You have to look further for near neigh-
bors in high dimensions, and consequently the esti-
mate is no longer local and can be severely biased.
This is the chief motivation for the additive model
7(X) = so + 22, 5;(X;). Each function is estimated by
smoothing on a single co-ordinate; we can thus include
sufficient points in the neighborhoods to keep the
variance of the estimates down and yet remain local
in each co-ordinate. Of course, the additive model
itself may be a biased estimate of the true regression
surface, but hopefully this bias is much lower than
that produced by high dimensional smoothers. The
additive model is an obvious generalization of the
standard linear model, and it allows easier interpre-
tations of the contributions of each variable. In prac-
tice a mixture of the two will often be used:

B8 X =s+ Y 5X)+ T BX,.

Jj=1 J=q+1

7.1. Estimation—The Additive Regression Model

We now turn to the estimation of s¢, si(:), ---,
sp(-) in the additive regression model

(35) E(Y|X) =s + i si(Xj),
j=1

where Es;(X;) = 0 for every j.

In order to motivate the algorithm, suppose the
model Y = s, + }?_, 5;(X;) + ¢ is in fact correct, and
assume we know so, s1(-), ---, sj=1(+), Sj+1(-), ---,
$p(+). If we define the partial residual:

Ri=Y—s — Y sk(Xa),
k#j
then E(R;| X;) = s;(X;) and minimizes E(Y — so —
Y2_ sk(Xk))2 Of course we don’t know the s(-)’s, but
this provides a way for estimating each §;(-) given
estimates {$;(-), i # j}. The resulting iterative proce-

dure is known as the backfitting algorithm (Friedman
and Stuetzle, 1981):

Backfitting Algorithm
Initialization: so = E(Y), si(-)=s}(-)=--.
=s5(-)=0, m=0.
Iterate: m=m+1

forj=1topdo:

j-1
Ri=Y—s— 2 sp(Xk)

k=1

p
Y siTi(Xe)

k=j+1

- s7U(Xj) =E(R;| X)).
p 2
Until: RSS = E( Y—s0— X s}"(X,—)) fails to
j=1

decrease.

In the above s*(-) denotes the estimate of s;(-) at the
mth iteration. Notice that by effectively centering Y
at the start, we guarantee that Es!" (X;) = 0 at every
stage. It is clear that RSS does not increase at any
step of the algorithm and therefore converges. Brei-
man and Friedman (1985, Theorem 5.19) show in the
more general context of the ACE algorithm that the
solution Y, s/°(X;) is unique and is therefore the best
additive approximation to E(Y|X). This does not
mean that the individual functions are unique, since
dependence among the covariates can lead to more
than one representation for the same fitted surface.
These results do not depend on the validity of either
the additive model for E(Y | X) or the additive error
assumption as in (33).

If we return to the world of finite samples, we
replace the conditional expectations in the backfitting
algorithm by their estimates, the scatterplot smooths.
Brieman and Friedman have proved:

e For a restrictive (impractical) class of smoothers,

the algorithm converges.

e For a less restrictive class, the procedure is mean
square consistent in a special sense. Suppose that
the mth iteration estimate of s; is §]", where the hat
implies it is a function of the sample size n. Let s
be the estimate of s; at the mth iteration of the
algorithm applied to the distributions. Then
E@EM(X) — s/(X))* — 0 as n — o, with m fixed.

A special case arises if we use the least squares
regression d + bX, ; to estimate E(- | X;) at every stage
of the algorithm. We can once again invoke the Brei-
man and Friedman results for this projection operator,
which show that the algorithm converges to the usual
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least squares estimate of the multiple regression of Y
and X. This is true for both the usual data estimate
or the estimate in distribution space as in Section 5.
Hastie and Tibshirani (1984) give an elementary proof
of this fact due to Werner Stuetzle.

Although these results are encouraging, much work
is yet to be done to investigate the properties of
additive models. In multiple regression we need to
worry about collinearity of covariates when interpret-
ing regression coefficients; perhaps cocurvity has even
worse implications when trying to interpret the indi-
vidual functions in additive models. This would call
for nonparametric analogues of linear principal com-
ponents analysis—a standard device for determining
lower dimensional linear manifolds in the data. Some
work in this direction has been done (Hastie, 1984b;
Young, Takane, and de Leuuw, 1978).

If the purpose of our analysis is prediction, these
problems are less important. We proceed in an ex-
ploratory spirit, and hopefully a sound bed of theory
will develop around these as yet unanswered ques-
tions.

7.2. Backfitting in the Local Scoring Algorithm

For multiple covariates the local scoring update (22)

is given by
x]
and in exponential family case (24) is

a7 7' (x) = E[n(x) + (Y — u) (9n/du) | X]
(37) - E(Z|x)

al/an
E[0%/dn* | X]

(36) 1n'(x) = E[n(X) -

where g(u) = n and Z is the adjusted dependent
variable. For the reasons described in the previous
section, we will restrict attention to an additive model:

p
n(X) =80 + 2 5(X)).

We see that (37) is of the same form as equation (35),
with Z playing the role of Y. Thus to estimate the
s;(-)’s, we fit an additive regression model to Z, treat-
ing it as the response variable Y in (35). The sum of
the fitted functions is 7° of the next iteration. This is
the motivation for the general local scoring algorithm
which we give for the exponential family case as in
(37).

General Local Scoring Algorithm
Initialization: so = g(E(y)), s3(-) =s3(.) = ---

=s0(-)=0, m=0.

Iteratee m = m + 1
1. Form the adjusted dependent variable
Z=9"" 4 (Y = p" ) (0n/op™ ),

where

p
™ l=s5+ Y s/ (X;) and
j=1

"t =g(u™ ).

(3]

. Form the weights W = (du/dn™ ")?*V .
3. Fit an additive model to Z using the
backfitting algorithm with weights W,
we get estimated functions s]*(-) and
model n™.
Until: E dev(Y, u™) fails to decrease.

Step 3 of the algorithm is simply the additive regres-
sion backfitting algorithm (Section 7.1) with weights.
Hastie and Tibshirani (1984, Appendix B) show why
weights are required even in the distribution version
of the algorithm. To incorporate them, the data is first
transformed using the weights, and the backfitting
algorithm is then applied to the transformed data.

From the results of the previous section, we see that
the inner loop converges. In particular, if each
smoother is replaced by the simple regression on the
corresponding covariate (for data or distributions), the
backfitting algorithm converges to the usual
(weighted) multiple regression. This shows that in
this case, the algorithm is identical with the usual
GLM estimation procedure using Fisher scoring as in
(12) and (13). Once again the data analogue of the
algorithm replaces weighted conditional expectations
by weighted smoothers. The span for each smoother
is chosen by cross-validation as described in Section
4.2. Note that for nonexponential family models an
additional backfitting step is required to compute the
denominator of the second term in (36).

Stone (1986) has shown that under mild regularity
conditions, a unique best additive approximation (in
terms of Kullback-Leibler distance) exists for any
exponential family model. We conjecture that the
general local scoring algorithm converges to this best
additive approximation.

It is important to stress the generality of the pro-
cedure. First, note that in either the backfitting algo-
rithm or its generalization, different smoothers may
be used for different covariates. As a simple example,
a linear least squares fit would be used to “smooth” a
binary covariate or a continuous covariate for which
a linear fit was desired. Other possibilities might
include a periodic smoother for a covariate like day of
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the week, or a smoother that forces monotonicity
(Friedman and Tibshirani, 1984). Secondly, interac-
tions can be incorporated by defining a new covariate
to be the product of two or more covariates, then
smoothing on the new covariate. Interactions involv-
ing categorical covariates can be handled with dummy
variables in the ustal way.

The backfitting idea is also used in the local like-
lihood estimation procedure to incorporate multiple
covariates. To estimate a new s;(-), or to adjust s;(-)
for other sx(-)’s in the model, s;(-) is re-estimated
holding all others fixed. The algorithm cycles through
the functions until convergence. The details can be
found in Tibshirani (1984).

7.3. The Breast Cancer Example Continued

We continue our analysis of the breast cancer data
using all three covariates. The model is now log
[p(x)/(1 — p(x))] = so + ¥ 3-1 sj(x;). This is preferable
to modeling p(x) by an additive sum, since we would
have to check that the estimated probabilities are
positive and add to 1; the logit transform allows our
estimates to be unrestricted. There are other reasons
for using the logit transform; on the logit scale prior
probabilities appear only as an additive constant
(McCullagh and Nelder, 1983, page 78). This is useful
in biomedical problems where there is often some
established population risk, and the problem is to see
what factors modify this risk for the sample under
study.

Table 2 summarizes the various models fitted (by
local scoring). The approximate degrees of freedom
(dof) or number of parameters of the model are dis-
cussed in Section 9. Auto in the column labeled spans
indicates that each time a smooth was computed, the
span was selected by cross-validation. The entry D?
refers to the percentage of deviance explained and is
in direct analogy to the more familiar R® in regression.

TABLE 2
The analysis of deviance (ANODEV ) table for the breast
cancer data
Degrees
Model Spans of Deviance  D?
freedom
Constant 1 353.67
X1, X2, X3 All linear 4 328.75 .07
X1, Xa, X3 All .5 8.8 307.89 13
X1, X2, X3 Auto 8.0 308.22 13
X1, X3 Auto 5.9 317.66 .10
X, X3 Auto 5.0 312.68 12
X2, X2 Auto 4.1 346.71 .02
Parametric 7 302.30 .15

" Figures 3, 4, and 5 show the estimated functions for

our model with deviance 308.22 and dof = 8.8.
Landwehr, Pregibon, and Shoemaker (1984) ana-

lyzed this data set and in particular considered partial

residual plots in order to identify the functional form
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for each covariate. Their final model was
logit p(x) = Bo + B1x1 + Boxi + Baxd + Buxe
+ Bsx1x2 + Bs(log(1 + x3))

with a deviance of 302.3 on 299 degrees of freedom.
We fit this model in two ways: using a) GLIM and
b) the backfitting procedure with linear fits for the
transformed variables. As expected, the results agreed
(up to four significant figures). This model is labeled
parametric in the table. We have superimposed the
parametric model terms in the figures, and note that
the functions are very similar. If Bx; is the estimated
linear model, and p; the corresponding probability
estimate, the partial residual for variable j and obser-
vation i is defined by

(38)

Yi — ﬁi
pi(l —p)°
Landwehr, Pregibon, and Shoemaker (1984) show that
if the true model is

log[p(x)/(1 — p(x))] = Bo + kZ, Brxr + si(x;),
7]

(39) r(xij) = Bjx,»j +

and s;(-) in linear, then E[r(X;) | X; = x] = s;(x). Thus
they use the smooth of the partial residuals to suggest
the functional form. This result breaks down if the
other terms are not linear (Hastie, 1984a; Fienberg
and Gong, 1984). One can see from the previous sec-
tion that smoothing the partial residual corresponds
to the first step of the general local scoring procedure
in the local scoring algorithm, if our starting guess is
the linear model. The local scoring procedure contin-
ues, however, by simultaneously estimating and ad-
justing nonparametric functions for all the covariates.

8. COMPARISON OF LOCAL SCORING TO
LOCAL LIKELIHOOD ESTIMATION

In a number of examples that we have tried, the
local scoring and local likelihood procedures give very
similar results. This is not surprising in light of the
discussion of Section 5, where we saw that both tech-
niques are based on empirical estimates of the ex-
" pected log likelihood. The difference seems to be in
computational speed: local scoring is O(n) while local
likelihood, if the span increases like n°, is O(n“*'). For
large data sets, the local scoring procedure is consid-
erably faster. This leads us to ask: will the two pro-
cedures always give similar estimates? Artificially,
they could be made very different. The reason for this
is as follows. For a single covariate, the local likelihood
procedure is completely local; that is if x; is not in the
neighborhood for estimating s(x;), then (x;, y;) has
absolutely no effect on the estimate §(x;). This is not
true in the local scoring procedure, for as the smooth

operation is iterated, the estimates §(x;) enter into the
computation of §(x;). Thus sending y; off to +o would
have a large effect on the estimate of $(x;) in the
smooth updating procedure, but no effect in the local
likelihood procedure.

Given the theoretical basis of Section 5, it seems
eminently reasonable that the two procedures be
asymptotically equivalent in some sense. In Hastie
and Tibshirani (1984) we sketch a proof of this fact
for exponential families.

For finite samples, we can describe operationally
the difference as follows, using logistic regression as
an example. Suppose we start with p(x;) = y, the
overall proportion of 1’s. Then the first iteration for
both procedures is identical:

e Local scoring regresses z; = log[p(x;)/(1 — p(x;))] +
(5 — p(x)/(p(x)(1 — p(x;))) on x; for j € N, with
weights p(x;)(1 — p(x;)), to obtain the estimate
n'(x;); this is the local linear smoother operation in
this neighborhood.

o Local likelihood does exactly the same operation in
computing the maximum likelihood estimate (MLE)
in the neighborhood, since this is the first step in
the adjusted variable regression procedure used to
compute the MLE.

The second iterations are very similar:
e Local scoring regresses
zj=n'(x) + (3 — p'(%))/(p*(x)(1 — p(x;)))

with weights p'(x;)(1 — p'(x;)) against x; for j € N;
to obtain the estimate 72(x;).
e Local likelihood, however, regresses

2 =ni(x) + (y; — p}(%))/(p} () (1 — pi(x;)))

against x; with weights p'(x;)(1 — p'(x;)), where
ni(x;) refers to the extrapolated value of ' at x;
derived from the linear estimate n'(x;) = Bo; + Bux;.

If the function is fairly linear in the neighborhood
then these two steps will yield similar estimates. For
a given point x;, the local scoring algorithm uses its
latest estimate of p(x;) for every neighborhood in
which x; appears. The local likelihood procedure, how-
ever, uses a linear approximation (on the 7 scale) for
Dp(x;) based on its estimate p(x;) for j € N;.

9. DISCUSSION

Generalized additive models provide a flexible
method for identifying nonlinear covariate effects in
exponential family models and other likelihood-based
regression models. In the two data examples given in
this paper, we utilized a degrees of freedom estimate
to assess the importance of covariates. This is based
on the expected decrease in the deviance due to
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smoothing, computable from the trace of the appro-
priate “smoother matrix.” We give details in Tibshir-
ani (1984) and Hastie and Tibshirani (1984). In Hastie
and Tibshirani (1985a and references therein) we also
provide a method for computing confidence bands for
the smooths.

There are a numbher of ways that the setup can be
further generalized. For example, the local scoring
algorithm can be extended to provide nonparametric
estimation of the link function g(u). Usually, g(u) is
assumed to be known; for example, in the linear logis-
tic model, g(u) = log[u/(1 — u)]. The generalization
allows g(u) to be estimated nonparametrically and
hence provides a check of two of the assumptions
inherent in linear logistic modeling: the linear form
for the covariates and the logit link. Details may be
found in Hastie and Tibshirani (1984). The local
scoring procedure can also be generalized to fit a
smooth version of McCullagh’s (1980) model for or-
dinal data, analogous to the extension of the linear
logistic model described here. In its most general form,
the algorithm can be applied to any situation in which
a criterion is optimized involving one or more smooth
functions. We discuss this in Hastie and Tibshirani
(1985b).

In the local scoring procedure we have used a
running lines smoother, but we noted that other
smoothers could be used. Cubic splines are a popular
technique for smoothing and would be an interesting
alternative. Wahba (1980) discusses the use of two-
dimensional “thin-plate splines” for estimating re-
sponse surfaces. These are more general than the
additive model but are more difficult to interpret.
O’Sullivan, Yandell, and Raynor (1984) look at splines
for general exponential family models. Analogous to
the Gaussian case, they emerge as the solution to a
penalized likelihood problem. Again, an additive
model is not considered; instead, a general surface is
fitted. Green and Yandell (1985) propose similar tech-
niques, with an emphasis on semiparametric models.
Stone and Koo (1986a) investigate the use of additive
B-splines for exponential family models.

The computations in this paper were performed
using the GAIM (generalized additive interactive mod-
eling) package, available upon request from either
author. Also available from the authors are a GAIM
function for the S statistical language and a special
version of GAIM for the IBM PC.
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Comment

David R. Brillinger

“All considered, it is conceivable that in a
minor way, nonparametric regression
might, like linear regression, become an
object treasured for both its artistic merit
as well as usefulness.”

L. Breiman (1977)

This paper by Hastie and Tibshirani lays bare the
insight of the above remark of Leo Breiman made in
the course of the discussion of a seminal work on
regression with smooth functions (Stone, 1977). Here
Hastie and Tibshirani increase the store of both artis-
tic merit and usefulness by plugging nonparametric
regression into the generalized linear model and by
alluding to a variety of possible further extensions. It
all makes being a statistician these days a joy—it
seems approaches are now available to attack most
any applied problem that comes to hand. (Under-
standing the operational performance of those ap-
proaches is clearly another matter however.)

It was nice to be asked to comment on such a
stimulating paper. I have divided my comments into
several sections, striving to focus on individual strains
present in the paper, believing that future research on
those strains will proceed at different rates.

1. STRUCTURE OF A BASIC PROBLEM

One has data (Y;, X;),i=1, ---, n, with n moder-
ately large. One is willing to consider a model for the
individual Ys wherein: i) the conditional distribution
of Y given X belongs to an exponential family, ii) it
involves X only through n = Y s;(X;) with the s;(-)

David R. Brillinger is Professor of Statistics, University
of California, Berkeley, California 94720.
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unknown, but smooth, and iii) E{Y | X} = (Y s;(X})),
with h(.) known. The parameter of the model is
6=1{sj(-),j=1, ---,p}, and possibly a scale. The two
key elements of the model are a) that the s;(-) are
smooth and b) that Y, s;(X;) is additive.

It is to be noted that this model continues the
contemporary statistical trend to eliminate distinc-
tions between the cases of finite and infinite dimen-
sional 8 or between discrete and continuous data.

The problem is of interest, for one may wish to
make inferences from the data via the model or one
may wish to validate a model with a low dimensional
parameter by imbedding it in a broader model, for
example.

2. CONSTRUCTION OF ESTIMATES

To begin, focus on estimating n = 7(X), via a
relationship that characterizes the true value 7.
Suppose one has a function p(Y|#n) such that
Eo{p(Y|n)|X} is maximized at 7 = 7. An example
would be log f(Y|n), f(-) denoting the conditional
density of Y. Alternately, suppose one has a function
Y(Y | n) such that Eofy/(Y|7n)| X} = 0 at n = 5. An
example would be 9 log (Y | #)/dn. Estimates of the
true no may be constructed by paralleling these rela-
tions on the data. For example, given weights W,,;(X)
such as in Stone (1977) one might take 7 to maximize

Z_ p(Yi| 7) W,i(X)

or to satisfy
2y (Yi| D) Wu(X) = 0.

The estimate of Hastie and Tibshirani based on (26)
takes this form. One can expect such estimates to be
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consistent under regularity conditions. Stone (1977,
page 643) gives some simple conditions. Such esti-
mates were called conditional M -estimates by Brillin-
ger (1977) and it was remarked there that one could
form robust estimates directly (by limiting the influ-
ence of individual observations for example). It is
further clear that partial likelihood estimates, cen-
sored data estimates, and unequal probability of selec-
tion estimates are particular cases.

The critical advance of Hastie and Tibshirani
is to look for extrema with 5 of the form Y s;(X;).
They limit consideration to likelihood- and partial
likelihood-based estimates, but it is clear that they
could go on to form for example robust-resistant ones
by choice of p or .

It is further apparent that were the dimension of X,
D, unclear one could add an Akaike type term in p and
estimate p as well. Continuing, this makes it apparent
that penalized maximum likelihood estimates also
may be fit into this general setup. We have here a
type of inverse unstable problem. These are often
solved by forms of regularization (smoothing). It is
perhaps worth remarking that the first approach
above is a form of Courant regularization, while pen-
alized likelihood would correspond to Tihonov regu-
larization. (These techniques are discussed in Allison
(1979).)

There is much insight in Hastie and Tibshirani’s
remark that because of the additivity of » in the s;(-),
the smoothing need not be local (in the X-space).

3. COMPUTATIONS

In the next few years, the structure set out in the
preceding section may not be expected to change too
much. This is probably not true for the algorithms
numerically determining the extrema.

Hastie and Tibshirani propose an iteratively re-
weighted least squares solution, as in GLIM, inter-
woven with a stepwise selection procedure as in
Breiman and Friedman (1985). My experience with
such algorithms is that they are troubled by initial
values, precision/round-off, convergence criterion,
underflow/overflow, and instability among other
, things. Nonlinear iterations can do strange things. In
particular I expect better algorithms for determining
the components of Y, s;(-) to be developed.

4. SOME QUIBBLES

I do have some disagreements with the paper. In
the abstract, it is stated: “It has the advantage of being
completely automatic ...” I see this as both a disad-
vantage and not true. A disadvantage because surely
one wants flexible analyses. Not true because someone
(the programmer?) has made many choices: machine
precision, convergence criterion, smoother, .... The
analyst will not know these choices at his peril.

In Section 7 it is stated: “This is the chief motiva-
tion for the additive model.” The reason given is a
statistical one. To my mind the motivation is substan-
tive. Additivity is basic to science (see Luce and
Tukey, 1964, particularly the references therein).

Two medical data sets are analyzed, but no infer-
ences are made. Can the authors not set down some
(biological) insight or understanding that has been
gained from the analyses? Otherwise they might have
just as well presented the results of simulations.

5. FURTHER ISSUES AND PROBLEMS

In this section I am not complaining about possible
omissions from the present paper, rather I am inter-
ested in the authors’ thoughts regarding future direc-
tions of work. The paper certainly stands on its own.

The statistical properties of the estimates need to
be understood. What are they actually estimating in
the case of a finite sample? In time series we know
that the conventional spectrum estimate is estimating
an average of the power spectrum, albeit concentrated
near the frequency of concern. Is that the case here or
are remote values influential? The time series case
further suggests the possible utility of pretransforming
the Xs to reduce bias.

The sampling variability of the estimates need to
be assessed. Could the authors indicate their preferred
technique. Mine would be a jackknife variant, because
of its bias reducing properties and nonmodel depend-
ence. There is a need for goodness of fit/validation
procedures, diagnostics, measures of influence.

In power spectrum estimation, I do not generally
take the same bandwidth for all frequencies in the
conventional estimate (and more complex estimators
have a similar effect). Here the span is taken to be
the same. Have the authors thought of making it
variable?

Smoothness is essential in the development in the
paper. Yet many natural relationships are discontin-
uous and even multivalued. It would seem appropriate
to develop techniques for such situations. For the
former, perhaps one would smooth only when an
estimate of the derivative is small.

6. A QUESTION

In Section 1, the authors refer to the ACE procedure
of Breiman and Friedman (1985) as a means of deter-
mining a transform of the dependent variable. This
involves maximizing a correlation. In Section 9, they
refer to the use of local scoring (i.e., a likelihood-based
technique) for the analogous problem of determining
the link function. The two criteria are quite different
seemingly. Can the authors comment? I wonder about
yet another alternative, namely picking the transfor-
mations to maximize a nonparametric estimate of the



312 T. HASTIE AND R. TIBSHIRANI

mean information in 7 (X) about 8(Y). (This does not
involve a Jacobian.)

ADDITIONAL REFERENCES
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Comment

J. A. Nelder

I congratulate the authors on a fascinating piece of
work and offer three comments.

1. In order to make smoothing work it is necessary
to restrict it to one-dimensional covariate spaces,
hence the strong assumption of additivity. In principle
one could introduce cross-terms, e.g., have x,2 = x;x2,
as well as x; and x,, in the model; however, I suspect
the convergence of the algorithm might now become
immensely slow or even nonexistent because of the
functional relations between the covariates. An alter-
native might be to include a term of the form
s1(x1) - s2(x2), with coefficient to be estimated. Have the
authors any comments on this problem?

J. A. Nelder is Visiting Professor, Department of Math-
ematics, Imperial College, 180 Queen’s Gate, London
SW7, England.

Comment

Charles J. Stone

Hastie and Tibshirani deserve commendation for

the originality, significance, and interest of their ap- .

proach and the excellent expository review in the
present paper. )

Recently I have been working on a different ap-
proach to fitting more or less the same class of models,
but using polynomial cubic splines to model the com-
ponent functions s;(-) and the Newton-Raphson
method to calculate the ordinary maximum likelihood
estimate. In order to avoid artificial end effects of
polynomial fits such as those shown in Figures 2 and
3, the splines are constrained to be linear to the left

Charles J. Stone is Piofessor of Statistics, University
of California, Berkeley, California 94720.

BREIMAN, L. (1977). Discussion of Consistent nonparametric
regression, by C. J. Stone. Ann. Statist. 5 621-622.
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Math. Psych. 1 1-27.

SToNE, C. J. (1977). Consistent nonparametric regression (with
discussion). Ann. Statist. 5 595-645.

2. To me it seemed intuitively surprising that the
figures in Table 2 show the generalized additive model
to have one parameter more than the original para-
metric one, but a deviance nearly 6 higher. I then
realized that the latter has a cross-term in it, and this
appears to be important. What would be the effect of
adding a term in s;(x;)-sy(x2) to the former? Also it
would help interpretation if the difference in deviance
were given when each term in their model was replaced
by a parametric form. This would give summary
statistics for differences visible in Figures 3, 4,
and 5.

3. The new version of GLIM (3-77) now available
has a facility for inserting new code. I very much hope
that the authors can be persuaded to exploit this in
order to make available the fitting of generalized
additive models in GLIM.

of the first knot and to the right of the last knot. To
avoid multiple representations of the constant term,
zero sum constraints are imposed on the individual
terms (when p = 2), as is done in this paper. Thus, if
there are N knots, there are N + 4 degrees of freedom
for the unconstrained spline and N — 1 degrees of
freedom for the constrained spline. There is also 1
degree of freedom for the constant term; so there are
(N — 1)p + 1 degrees of freedom in total. This ap-
proach will be referred to as the parametric spline
approach to distinguish it from the smoothing spline
approach favored by Wahba and others in which
smoothing is achieved by a roughness penalty instead
of by confining attention to spline models with a
modest number of degrees of freedom. In theory, N
should tend to infinity as the sample size n tends to
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infinity so as to achieve the optimal rate of conver-
gence (see Stone (1985, 1986)). Asymptotically opti-
mal rules for selecting N based on the data have been
obtained by Burman (1985). In practice N = 5 has
proven sufficient. This is not surprising, since the
standard linear approach allows only 1 degree of free-
dom per component function. Allowing 4 degrees of
freedom should provide enough flexibility to fit the
regular departures from nonlinearity that are likely to
occur in practice, especially when linear constraints
are used in the tails. For the flexibility is then highest
in that portion of the axis that contains the bulk of
the data. Linear restrictions on splines lead to tail
behavior very similar to that of the linear smoothers
(local linear regression) recommended by Stone (1975,
1977), Cleveland (1979), Friedman and Stuetzle
(1981), and this paper. As Hastie and Tibshirani and
others have pointed out, it is desirable to have a
reasonable automatic default rule. The rule that has
emerged from Stone and Koo (1986b) is this: given a
specific covariate, order its observed values as x;),

-+, X(»; put knots at the minimum value x;, and
maximum value x,; put additional knots at x,, i =
i2, I3, ls, chosen so that the logits of 1/(n + 1),
b/(n + 1), i3/(n + 1), iy/(n + 1), n/(n + 1) are
approximately equally spaced.

In the few cases where the two approaches have
been applied to the same data, the resulting curves
appeared visually to be quite similar (see Stone and
Koo, 1986a, and Devlin and Weeks, 1986), except that
the approach of Hastie and Tibshirani leads to small
scale roughness not present in curve estimates ob-
tained by the parametric spline approach. The ap-
proaches seem equally feasible numerically and
equally automatic. But the parametric spline approach
has several conceptual advantages. In particular, the
standard maximum likelihood method can be used to
estimate the parameters and obtain confidence inter-
vals that are asymptotically valid, at least when N is
fixed. The x? approximation to the asymptotic distri-
bution of the logarithm of likelihood ratio statistics is

also asymptotically valid with an integral number of

degrees of freedom. The theory is analytically tracta-
ble even when N — ® as n — o, provided that the
covariates are restricted to a compact set. Undoubt-
edly, Hastie and Tibshirani could site advantages for
their approach.

In order to carry out the asymptotics for the para-
metric spline approach when N — o as n — oo, it
seems necessary that the log likelihood function be
strictly concave. Such concavity holds in generalized
additive models when 7 = 8 and for some other choices
of the link function (such as that corresponding to
probit models), but it is not true for an arbitrary link
function. Strict concavity is desirable even when N is
fixed, for it guarantees that the log likelihood function

have at most one local maximum and that a local
maximum, if it exists, be the unique global maximum.
Hastie and Tibshirani do not explicitly mention strict
concavity, which in their notation amounts to the
requirement that d2//dn? < 0. Even without this re-
quirement, it is true that E(d®l/dn?*|x) < 0, but per-
haps the algorithm in (23) of this paper is more reliable
when the log likelihood function is strictly concave.

Generalized additive modeling as studied by Hastie
and Tibshirani, by Burman, and by myself is an ex-
tension of the generalized linear models (GLMs) in-
troduced by Nelder and Wedderburn (1972). But, so
far at least, one limitation of GLMs has been pre-
served; namely, the restriction to exponential models
that involve a one-dimensional parameter 6. The most
obvious practical advantage of considering a multi-
dimensional parameter 6 is that the setup would then
include multinomial models for conditional distribu-
tions and thereby allow for categorical response vari-
ables Y having more than two possible categories.
Once covariates are included we have a natural setup
for developing reasonable and flexible multiple clas-
sification procedures. In the linear form of the model,
each coordinate of § would be a linear function of the
covariates. In the additive extension, each coordinate
would be an additive function of the covariates. Ide-
ally, the fitting procedure should be such that the
estimated conditional probabilities of the various cat-
egories are positive and sum to one. This can undoubt-
edly be done with the parametric spline approach. Can
it also be done with the approach of Hastie and
Tibshirani?

In the present paper, Hastie and Tibshirani treat
Cox’s proportional hazards model as being outside the
framework of GLMs. However, the logarithm of the
partial likelihood is of the form log-PL = ¥;ep [Bx; —
log(Y jer, €”%j)]. For each i, the expression enclosed by
brackets is exactly in the form of a multinomial model,
there being as many categories as there are elements
in the risk set R;. Thus the setup is essentially that of
independent but not identically distributed multinom-
ial response experiments. In particular, log-PL is a
strictly concave function of the unknown parameters,
so the parametric spline approach should also be via-
ble. But the asymptotics, especially when N — o as
n — o, have yet to be worked out.
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Comment

Peter McCullagh

Hastie and Tibshirani are to be congratulated for
presenting the theory and methodology of generalized
additive models in a form that keeps incidental math-
ematical details at an acceptably low level. I have little
to add and my single comment is therefore brief.

The whole thrust of the authors’ development seems

Peter McCullagh is Professor of Statistics, Department
of Statistics, The University of Chicago, 5734 Univer-
sity Avenue, Chicago, Illinois 60637.

Rejoinder

Trevor Hastie and Robert Tibshirani

1. THE GENERAL PROBLEM

In Section 5 of the paper, we motivated the local
scoring and local likelihood estimation procedures as
empirical methods for maximizing E(I(n(X), Y)). In
the two procedures, the maximization problem is ap-
proached in different ways. In the local likelihood
method, an estimate of E((I(n(X), Y)|X = x))
is constructed (for each x) and this has the form
(1/kn)- Y jen, Un(x;), y;) given in (26) of the paper. As
Brillinger notes (his Section 2), one can generalize

this and hence include robust estimates and many -

others.
~ On the other hand, the local scoring procedure
maximizes E(l(n(X), Y)) by estimating the quanti-
ties in the update expressions (22) and (36). Note,
however, that this procedure is not expressible as a
maximation of the kind that Brillinger describes,
i.e.,, a maximization of a function of the form
¥ p(Y:| 7)) W,o:(X). However, it is possible to write
down a finite sample justification of local scoring (to
answer a question of Brillinger’s) based on the notion
of penalized likelihood. This justification applies only
in the special case in which the local scoring algorithm
uses linear smoothers. Recall that a linear smoother
is one for which the result of smoothing a vector z can
be written simply as z = Sz, for some matrix S, called

STONE, C. J. (1985). Additive regression and other nonparametric
models. Ann. Statist. 13 689-705.

STONE, C. J. and Koo, C.-Y. (1986b). Function Estimates. AMS
Contemporary Math. Ser., Amer. Math. Soc., Providence, R. I.

to be based implicitly on the following assumption,
here reduced to the bare essentials: zero interaction is
fundamentally more plausible than componentwise
linearity in the covariates. Has there been any attempt
to justify this point of view, either philosophically or
empirically by examining a large number of examples
or by any other means? A closely related question
concerning statistical strategy is the following: at what
stage of analysis does the assumption of zero interac-
tion come under scrutiny?

a “smoother matrix.” Now suppose we have data (y,
X115 X12, =+ *5 X1p)y ** *5 (Yny Xn1, Xng, * -+, Xnp) and let S;
be the smoother matrix for the jth variable. Let s; =
(s1(x1), sa(2g), -, snlxn)),, j = 1,2, .-, p and
consider the following problem. Find s,, s3, - - -, s, to
maximize

(1) i) — 5 3 55(57 ~ Ds

where n = o + Y7 s; and S; is a generalized inverse of
S;. Then it is easy to show that the local scoring
procedure is a Fisher scoring step for maximizing (1)
(see Hastie and Tibshirani, 1986a, for details). Now a
typical smoothe: matrix is close to symmetric, has
eigenvectors that are close to polynomials, and has
eigenvalues that tend to decrease with increasing order
of the eigenvector. Hence, the penalty term in (1) puts
greater penalty on the higher order polynomial com-
ponents of each s;. There is also a close tie here to
smoothing splines. If we start with a penalty of the
form Y7 \;s; K;s;, where K;is an appropriate quadratic
penalty matrix, we derive a local scoring procedure
that uses cubic spline smoothers. Hence, there is close
relation of local scoring to the work of O’Sullivan,
Yandell, and Raynor (1986), Green (1985), and
Green and Yandell (1985). These authors consider a
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penalized likelihood approach, with emphasis on
quadratic penalties leading to spline smoothing, as
above. None of these authors use backfitting type
algorithms, however, because their models contain
only a single smooth function or surface (in addition
to parametric terms) and hence backfitting is not
required. i

Following Brillinger’s comment, we note that the
local scoring procedure can also be used for robust
estimation. For a general y function, the local scoring

V(Y| n)

step equivalent to (22) is
]
E(dy/dn| x)

As before, the conditional expectation is estimated by
a smoother, and for multiple covariates, » might be an
additive function.

Stone’s parametric splines can be cast in the same
setting. The spline fit on each covariate can be written
as a linear operation and hence his model could be fit
with a local scoring algorithm performing the appro-
priate linear fit at each smoothing step. By the results
quoted in Section 7, this procedure would converge to
the maximum likelihood estimates of the functions;
this would, however, be a very inefficient way to fit
the model, since it can be solved efficiently via the
usual iterative methods.

A disadvantage of this global minimization frame-
work is that it doesn’t incorporate nonlinear smooth-
ers. These include variable span smoothers (e.g.,
“supersmoother,” Friedman and Stuetzle, 1982) and
the “split-linear smoother” (MacDonald and Owen,
1984) for capturing discontinuities. These and other
nonlinear smoothers would be useful for capturing the
irregular or discontinuous functional behavior that
Brillinger mentions, but we’ve had only a limited
experience with them so far. We have incorporated a
cubic spline smoother into the lastest version of GAIM
(thanks to Finbarr O’Sullivan for his code) and have
been happy with the results. As a final point, we
reiterate another nice feature of local scoring: one is
free to choose different smoothers for different co-
variates. Hence, one could use a spline smoother
.for one covariate, a parametric spline for a second
covariate, a variable span smoother for a third
covariate, and so on. Of course, straight line fits and
categorical variables can also be used, resulting in a
rich class of models.

2. ADDITIVITY AND INTERACTION

Drs. Brillinger, McCullagh, and Nelder bring up the
question of additivity and interaction. It is difficult to
come up with a clear definition for the latter; one
possibility is to define interaction as being the lack of
fit in a standard (componentwise) linear model.
Phrased in this way, nonlinearity in a covariate is a
kind of interaction. We suspect that McCullagh is

2 n'(x) = E[n(x) -

referring to a more restrictive form of interaction,
something like product interactions of two or more
variables. We don’t feel that zero interaction (of this
latter sort) is “fundamentally more plausible” than
componentwise linearity; instead, we view the method
that we have presented for estimating nonlinearities
as just another tool for detecting departures from the
linear model. McCullagh’s question concerning when
(in an analysis) interaction should come under scru-
tiny is a deep one that we don’t know how to answer.
To further stress the difficulty of this question, we
note that transformations of Y are another way to
model certain kinds of product interactions on the
original Y scale. The overall goal of all these tools is
to find simple departures from a componentwise linear
model; developing an effective strategy for this is a
challenging and important problem.

We do want to emphasize that simple interactions
can be incorporated in a generalized additive model.
These include interactions of the form Bx;x,, s(x;x,),
and B8,(x1) - $2(x2) (suggested by Nelder), where §,(x,)
and $,(x,) are known functions, possibly obtained from
an additive fit. We don’t feel (as Nelder does) that
convergence of local scoring will be a problem in these
cases; it will simply take longer to converge as the
constructed variables become more correlated.

More recently, we have experimented with the use
of two-dimensional smoothers to fit surfaces more
general than an additive one. Figure 1B illustrates
such a surface.

The variables income (of the head of household)
and age are two of a number of variables used to model
the proportion of families having a telephone at home
(the datais part of a telephone survey kindly furnished
by Ed Fowlkes). The terms s;(Inc) + s.(Age) were
included in an additive logistic model, together with
several other variables. Figure 1A gives the additive
surface defined by these two fitted functions. Figure
1B shows the estimated interaction surface s;.(Inc,
Age). This was estimated by using a (kernel) surface
smoother within the local scoring algorithm for this

" pair. The single function for income was quadratic,

whereas in Figure 1B we see that that the income
effect appears mostly monotone (except for a dip
around the middle ages) and levels off at higher ages
(and thus higher incomes). This leveling off goes un-
noticed in the additive function model; rather it simply
dampens the overall effect. This example illustrates
the fact that an additive model can give us a reason-
able idea of what is going on, while finer details can
be discovered by fitting more general models.

3. COMPUTATIONAL CONSIDERATIONS

Brillinger reports many problems with iteratively
reweighted least squares algorithms, and while we
don’t doubt that better procedures will be developed,
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F16. 1. (A) Additive surface defined by s:(Inc) + s,(Age). This gives an idea of the types of surfaces produced by additive models. (B)
Interactions surface s, 2(Inc, Age) reveals two-dimensional features not captured by the additive model. The surface was estimated using a two-

dimensional kernel smoother within the local scoring algorithm.

we have had few difficulties with the present algo-
rithm. Brillinger later told us that this problems oc-
curred in special models that incorporated random
effects, and perhaps this added complexity caused
some of the difficulty.

In the local scoring algorithm, many variations are
possible, in terms of the order of the smoothing and
updating operations. In some early experimentation
we had convergence problems with one variant. We
chose the present method because it converged well in
practice and because it reduces to Fisher scoring when
linear fitting is used.

More recently, we have developed (with Andreas
Buja, 1986) a new version of backfitting in which the
linear components for all the variables are all fit in a
separate projection. We have been able to prove con-
vergence of this modified algorithm when a practical
smoother like a cubic spline is used, something that
neither we nor Breiman and Friedman (1985) have
been able to do for the present algorithm. This algo-
rithm should also be much more efficient computa-
tionally.

We note that in general, one has a choice of observed
or expected information in the local scoring procedure;
these correspond to Newton-Raphson and Fisher scor-
ing, respectively. (In the exponential family with can-
onical link, they are the same.) In the paper, we used
observed information for the general case, but we
haven’t yet studied this choice. Nor have we thought
enough about concavity of the log likelihood, as men-
tioned by Stone.

Brillinger’s points about an “automatic” algorithm
are well taken. We were referring to the fact that our
procedures eliminate some of the detective work nec-
essary for finding nonlinearities from partial residual
plots.

Finally, in response to Nelder’s request for a GLIM
version of the algorithms, we think we have a simple
method for implementation via the new PASS facility
that he is alluding to, but neither of us have the
3-77 version of GLIM and are looking forward to
receiving it (for UNIX machines).

4. DIAGNOSTICS AND TOOLS FOR INFERENCE

Brillinger mentions the need for fit/validation pro-
cedures, diagnostics, and measures of influence. As
mentioned in Section 9 and demonstrated in the ex-
amples, we have developed a notion degrees of freedom

“effective number of parameters,” following that of
Cleveland (1979). This is useful for assessing the
importance of model terms. We also have a fairly
simple way of estimating pointwise confidence bands
for the estimated functions, if the smoothers used are
linear. These are based on + twice a local measure of
standard deviation. See Hastie and Tibshirani (1984,
1985¢) for further details of both the above techniques.
Resampling methods, as suggested by Brillinger,
would be another approach. An example of this is
given in Efron and Tibshirani (1986), but we haven’t
yet studied this problem in detail.

The local scoring algorithm is not very robust to
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outliers and making the smoothers robust would not
solve the problem completely, if more than one co-
variate is present. What is needed is another outer
loop in which points are downweighed based on the
current fit; however, this may be computationally
formidable. As far as diagnostics are concerned, Buja,
Donnell, and Stuetzle (1986) have studied the analo-
gous problem to collinearity in additive models (they
call it “cocurvity”). This and much more work is
needed to develop for additive models a diagnostic
“black bag” like the one available for linear models.

5. THE DATA ANALYSES

In the two examples of our paper, we are guilty, as
Brillinger points out, of brushing over the scientific
aspects of the problem at hand. We will briefly try to
make amends here. In the first example, the smooth
in Figure 3 is interesting because it shows a plateau
around age 50, something oncologists call the “Clem-
menson hook.” In the Cox model example, an inter-
esting result was the disagreement, between the par-
ametric and nonparametric analyses, as to whether
the relative risk dropped or was about constant be-
tween ages 10 and 40. Further investigation (see Efron
and Tibshirani, 1986) suggested that there was insuf-
ficient data in this age range to decide the issue.

To answer Nelder’s questions on the first example,
the addition of a term Bx, x, to the generalized additive
model did not significantly reduce the deviance, al-
though it was significant when added to the paramet-
ric model. On Nelder’s suggestion, we tried adding the
term B88:(x1) - S2(x2) to the model, §;(x;) and §;(x2)
being the functions from the generalized additive fit.
This produced a drop-in deviance of only 1.4. We also
tried replacing each smooth by the corresponding par-
ametric fit, as suggested by Nelder. The drops in
deviance were 5.7, 3.6, and .01 on 1.7, 1.5, and 1.4,
respectively. Hence, only the function for age is sig-
nificantly better than its parametric fit.

For a more thorough data analysis using generalized
additive models, we refer the reader to Hastie and
Tibshirani (1985a and 1985c¢).

6. RELATED WORK AND EXTENSIONS

Stone discusses another approach to generalized
additive model estimation, namely the use of fixed
knot “parametric splines.” His method does have the
conceptual and mathematical advantages that he
mentions, but practically speaking, we worry about
the task of picking the number and position of the
knots. How much does this choice effect the appear-
ance of the final estimate? When many covariates are
present, should the knots be chosen in some way to
account for the other variables in the model? Another

closely related approach, is that of smoothing splines,
mentioned in Section 3 of this discussion. A compar-
ative study of all these methods would be very useful.

Stone mentioned multiparameter models. We have,
in fact, generalized the logistic model to incorporate
ordered categorical responses (Hastie and Tibshirani,
1986b). We adapted the proportional odds model of
McCullagh (1980):

logit[P(Y = k| x)]

(3) p
=ak-2fj(xj)7 k=1’2”"’K—19
j=1

where the response Y has K categories. The model
essentially says that the histogram for the response
categories shifts with the covariates according to
n(x) = Y2 f;(x;). We use the multinomial likelihood
for estimation. The appropriate local scoring algo-
rithm has an additional loop; we alternate between
estimating the K — 1 constants by weighted averages
of K — 1 adjusted dependent variates, and the additive
functions by backfitting on a scalar linear combination
of adjusted dependent variates. The model (3) can also
be used when a continuous response has been catego-
rized, and thus fills the gap between the extreme 0-1
response logistic regression model and the continuous
response ordinary regression model.

Brillinger’s final question concerning ACE and gen-
eralized additive models is a fascinating one. We would
like to take this opportunity to clarify the relationship
between the methods and report some current re-
search. First note that, as alluded to in Section 9 of
the paper, the local scoring algorithm can be used to
estimate any function that appears in a model, not
just a function of a covariate. We simply add a step
like (22) to the algorithm for that function. Thus for
example, we can estimate a link function (see Hastie
and Tibshirani, 1984) or a variance function (Hastie
and Pregibon, 1986). This fact will become important
below.

Now consider the Gaussian additive model
E(Y|X) = a+ X7 5/(X)). (We'll relate our comments
to nonGaussian generalized additive models as we go
along.) Two ways to extend this model are to allow
a transformation of the mean, ie., E(Y|X) =
fla + Y7 s;(X))) or a transformation of the response,
ie, E@(Y)|X) = a Y7 s;(X;). The former has been
looked at by Friedman and Owen (1986) and is a
special case of link function estimation for generalized
additive models via local scoring. The second model is
the transformation model, for which Breiman and
Friedman’s (1985) ACE algorithm provides a method
for estimation. The two models are not the same, even
if 6(.) is forced to be monotone. That is, we should
not expect that 67*(-) will be close to f (-) for a given
data set.
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Brillinger’s question concerns two possible methods
for estimating the functions of the transformation
model. The ACE algorithm maximizes the correlation
of the transformed variables. Brillinger’s suggestion is
to instead maximize the likelihood of the untrans-
formed variables, by direct analogy to the parametric
method of Box and Cox (1964). This likelihood would
include a Jacobian, as Brillinger states, to account for
the transformation 6(-). One can carry through Bril-
linger’s suggestion using the local scoring algorithm:
unfortunately, the resultant algorithm requires esti-
mates of the second and third derivatives of 6(-).
While we haven’t tried it yet, our guess is that the
algorithm might be unstable because of this.

Another approach to this problem, similar to Bril-
linger’s suggestion, is given by Tibshirani (1986). He
proposes an algorithm in which a (nonparametric)
variance stabilizing transformation is used to estimate
6(-). The procedure is called “RACE” for regression
ACE. In both simulated and real data examples, he
demonstrates that RACE eliminates many of the
anomalies of ACE, in particular, sensitivity to the
marginal distribution of the X’s. RACE is likely to
produce similar results (qualitatively) to Brillinger’s
suggestion, because the effect of the Jacobian is
mainly to force 6(Y) to have constant variance
(see Box and Cox (1964) and Tibshirani (1984,
Remark F)).

A transformation of the response might also be
useful in other generalized additive models, such as a
Poisson model for categorical data. Marhoul (1984)
looks at a related technique.
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